

 Navigation

 	
 index

 	
 next |

 	dj-geocoding 0.2.1 documentation

dj-geocoding: quick and easy geocoding

dj-geocoding is a Django app that has two goals:

	Provide basic geodata functionality without requiring PostGIS

	Make geocoding accessible and easy to integrate in the Django admin

PostGIS is fantastic but isn’t always available.

Contents:

	Installing dj-geocoding
	Configuration

	App configuration

	Geocoding in the Django admin
	Models and mixins

	ModelAdmin configuration

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Ben Lopatin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	dj-geocoding 0.2.1 documentation

Installing dj-geocoding

Install the package and add it to your project’s requirements file:

pip install dj-geocoding

The app does not install any models so there’s no need to add to your own
project’s INSTALLED_APPS list.

Configuration

For bulk geocoding the app currently uses Geocodio [https://geocod.io].
Future versions are expected to support additional bulk geocoding services.

Add your API key to your project settings:

GEOCODIO_API_KEY = 'jskd823jqjdkjdj191'

Note

Ensure that this key is added to either a non-source controlled settings
file or better yet is loaded via an environment variable. Secrets like this
should never go in source control.

App configuration

See configuring admin-based geocoding for project
integration guidance.

 Copyright 2014, Ben Lopatin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	dj-geocoding 0.2.1 documentation

Geocoding in the Django admin

With a few additions to your own app’s code you can enable filtering and
geocoding directly in the Django admin interface.

You don’t need to make every change identified here, but if you do not then
you should ensure that your own code answers the implicit assumptions covered
the configuration outlined.

Models and mixins

The GeocoderMixin provides a single method, geocode, which is useful in
your own code but not used by the admin interface.

If your model does not already have latitude and longitude Decimal fields then
build them with the GeoFieldsModel as the base model (or using the GeoBase
class which combines the GeoFieldsModel and GeocoderMixin. The
GeoFieldsModel adds the two Decimal fields required, the point property for
getting and setting the location by a single tuple, and the has_geolocation
method.

You’ll also want to add a get_display_address method to your model. This
method should take no extra arguments and should return a single string that
contains the formatted address. E.g.:

class MyModel(GeoBase):
 street_address = models.CharField(max_length=100)
 city = models.CharField(max_length=30)
 state = models.CharField(max_length=2)
 zip = models.CharField(max_length=9)

 def get_display_address(self):
 return ", ".join([self.street_address, self.city, self.state, self.zip])

ModelAdmin configuration

The admin geocoding action lets you select one or more locations from your
model in the Django admin and geolocate them using the admin’s action dropdown.

To enable the admin action, use the GeolocateMixin mixin class when defining
your ModelAdmin class.:

class MyModelAdmin(admin.ModelAdmin, GeolocateMixin):
 pass

As of version 0.2.1 the app provides only a count of those locations it tried
to geocode; it does not discern between successful and failed attempts in its
success message.

Filtering and listing

It’s helpful to be able to see which locations are geocoded at a glance, and
better yet, filter your list accordingly.

The GeoFieldsModel provides the annotated has_geolocation method which can
be used as a list_display item:

class MyAdmin(admin.ModelAdmin):
 list_display = ('name', 'has_geolocation')

The annotation means that Django will display the proper visual indicators for
whether this is true or not for each location.

The GeocodedFilter class assumes only that your model has latitude and
longitude fields.:

class MyAdmin(admin.ModelAdmin):
 list_display = ('name', 'has_geolocation')
 list_filter = (GeocodedFilter,)

 Copyright 2014, Ben Lopatin.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	dj-geocoding 0.2.1 documentation

Index

 Copyright 2014, Ben Lopatin.
 Created using Sphinx 1.2.2.

 _static/up.png

_static/plus.png

search.html

 Navigation

 		
 index

 		dj-geocoding 0.2.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Ben Lopatin.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/down.png

_static/ajax-loader.gif

_static/minus.png

_static/comment.png

